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value since its occurrence provides a significant in- 
crease in the area of a crystal giving useful lattice im- 
ages. 
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The method of obtaining the irreducible representations of crystallographic point groups is discussed. 
It employs the little-group technique and makes use of the solvability property. Octahedral group O is 
treated as an illustration. 

I n t r o d u c t i o n  

Character tables for the 32 crystallographic point  
groups along with the methods of obtaining them are 
given extensively in several s tandard texts (Wilson, 
Decius & Cross, 1955). But the method of constructing 
the actual irreducible representations ([R's) which are 
useful for several practical applications is rarely discus- 
sed. In a classic paper dealing with the study of  crystals, 
Bouckaert, Smoluchowski & Wigner (1936) have shown 
that the IR's  of a space group can be obtained by using 
the allowable representations of the groups of  wave 
vectors, known as little groups of the second kind. The 
details of  this method have been explained very elegant- 
ly by Lomont  (1959) and Bradley (1966). 

In this note we shall discuss the construction of the 
IR's  of any crystallographic point  group (in fact of  any 
solvable group) using the little-group method in con- 
junction with the solvability property (Lomont,  1959). 
Even though the application of the powerful little- 
group technique is strictly not necessary for point 
groups, it is instructive nevertheless to see how easily 
the actual representations can be obtained. As an il- 
lustration we shall consider the octahedral group O. 
also considered by Lomont  in a somewhat  different 
way. An application of the same method to the plane 
group p4g was considered by Raghavacharyulu  (1961). 

Since the method requires a certain amount  of  
familarity with a number  of terms, we shall first define 
them illustrating each with a relevant example. As an 
aid to the discussion, we shall refer to the character 
tables of  the point groups D2, T and O and the quotient 

Table 1. Character table for the dihedral group D2 

D2 I C ~ C[  C z 2 2 
. . . . . . . . . . . . .  

A 1 1 1 1 
B~ 1 1 -1  - 1  
By 1 - 1 1 - 1 
B~ 1 - 1 - 1 1 

Generating elements" 1, C x2, C[ 
y x Defining relations: (C~')2 = (C~)2 = 1", C2C2 C[= C x2 

Table 2. Character table jbr the tetrahedral group T 

T I 3C2 4C3 4C32 
. . . . .  

A 1 1 1 1 

[ Ea 1 1 E ~2 
Eb i 1 E z E 
F 3 -1  0 0 

E = e 21ri /3 .  

Generating 
elements: 1 C<31) 

(i°i)0 (i°i)l 
Defining relations" (C~) 2 =(C~I~) 3= I;(C~C~) 2 C~:C~;~ 2 

= 2~. 3 / 

C~ 

-1 
0 - 

Table 3. Character table for the octahedral group 0 

O I 3c, 8c3 6c+ 6c~ 

At 1 1 1 1 1 
A2 1 1 1 - 1  - !  
E 2 2 -1  0 0 
FI 3 - 1 0 I -1  
F2 3 - 1  0 -1  1 
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Generating elements: 
E 

IR's: 

Table 3 (cont.) 

I C~ C~ l) 

(0 0) (0 (; o) 
(i0!l ( ,0!) (i0!) Fl 1 0 0 0 

0 0 --1 1 

(i°!) (i°it F2 1 0 0 -- 0 
0 0 1 1 

Defining r e l a t i ons "  ( C ~ ) 4 = ( C ~ 1 ) ) 3 = 1 ;  [(C~)2 = C~] ; ,~ 4t,~.. 3~x::'tt)~2~x-/w4- C~I); ~4,-, 3~x~l)g-'xw4 = C t l ) t C X )  2 C ( 1 ) 3  ~ 4 a 

Representation E can be transformed into one with real elements by subjecting it to the unitary transformation UEU-1 where 
' ( '  ' )  

U=. - [ ,~  i - i  " 

group T/D2=C3 given in Tables 1, 2, 3 and 4. The 
generating elements and the defining relations are also 
given below each table. The two generating elements of 
O are taken as C~ and C~ t), the fourfold and threefold 
rotations, which transform a general point (xyz) into 
(xzf) and (zxy) respectively. The transformation 
properties of (xyz) with respect to all the symmetry 
operations of O can be found in Henry & Lonsdale 
(1965). With the help of the defining relations, the 
group multiplication tables can easily be constructed. 
The group multiplication table for O is given, for 
instance, by Lomont (p. 33). 

Table 4. Character table .['or the quotient group 
T/D2 = C3 

T / D 2 : C 3  D2 C(3 l ) .  D2 (C(31))-1. D2 

A 1 1 1 

[ E~ 1 E c 2 
Eb 1 ~2 

Definitions 

In what follows, we shall assume that G = ( A )  is a finite 
group of order g and H = (B) is a normal subgroup of 
order h; A and B are typical elements of G and H;  d an 
IR of H of dimension d and F a representation of G. 
Dr(A) and D~(B) are matrices representing elements A 
and B in the representations F and A. 

Soh'able group G 
The series G = Ho = H1 = H2 • • • = I in which Hi+l 

is a maximal normal subgroup of H~ is called a com- 
position series of G; H~/H~+~ are called composition 
quotient groups and their orders h~/ht+~ composition 
indices. G is a solvable group if its composition indices 
are prime numbers. 

Conjugate representation A ~ 
A representation of H conjugate to A relative to G 

is defined by Aa--+ DA(AHA-I).  In general A and A a 
need not be equivalent (A. ~ • AA). But if they are, 
then A is said to be self-conjugate. 

Example: In D2, the representation A is self-conjugate 
and Bx, B ,  Bz are conjugate but inequivalent to each 
other relative to T. 

Little groups of  the second and first kind L ~ and L ~ 
All the elements A of G for which A • =- • A A form 

the little group of the second kind relative to G,H,A 
and denoted by Ln(G,H,A). L u contains H as a maxi- 
mal normal subgroup. The quotient group L~(G,H,A) 
= L n / H  is the corresponding little group of the first 
kind. 

Example: L~(T, D2,A)=T and LIt(T, D2, Bx)=D2; 
LI(T, D2,A) : T/D2 = C3. 

Orbit O* 
An orbit of a normal subgroup H of G is the maxi- 

mal set of inequivalent IR's of H which are mutually 
conjugate relative to the elements of G. The number of 
IR's in 0 is called the order of the orbit. 

Examples: D2 has two orbits with respect to T: 01 = A ;  
02= {B:,,B, Bz}. T has three orbits with respect to O: 
01=A; O2={E,,Eo}; 03=r.  

Subduced representation F s = F,I,H 
In the representation F ~ Dr(A) of G, those matrices 

Dr(B) which are images of H form a representation of 
H called subduced representation and denoted by F~,H 
= F  s -+ Dr(B). It is of course of the same dimension as 
F and is in general reducible. 

Examp&: O ~ T ~ Dz and the orders of O/T and T/Dz 
are 2 and 3. Thus O and hence T and D2 are solvable 
groups. In fact all groups of order less than 60 and 
hence all crystallographic point groups are solvable 
groups. 

Examples: Let G = T  and H=D2.  A,~Dz=A(Dz); 
Ea+D2=A(D2) and F~,Dz=Bx®Br®B z. 

* Orbit, little groups of the second and first kind are some- 
times called star, little group and little co-group respectively. 

A C 29A - 9* 
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Induced representation F -  A J = A/~G 
glh 

Let G = ~  A~ t t  be a left coset decomposition of G; 
i = l  

a(A, B) a matrix of dimension g/h with elements 

aij(A, B)= 1 if AiBAj  -1 =A 
=0 otherwise; 

D r ( A ) = ~  a(A,B)@Dd(B) where @ and ~ denote 
BelI 

direct product and an ordinary matrix sum. Then 
F--+ Dr(A) is a representation of G of dimension 
(g/h)d induced by A of H and denoted by F=A~G. 

Example" Let G = T  and It=D2. Taking C~ and C~ ~) 
as the generating elements of T andT = D2 + C~)D2 + 
(C~I)) -~D2, we have 

Dr(1)=a(l'l)@DB~(I)= (i  O 

Dr(C~)=tr(C~, C~)@Dux(c'~)+tT(C~, C~)@D"~(C~) 
+ tr(C~, C~)@DBx(C~) 

(i° i) (i i i) (!o!) (! o i) = 0 - - 1 = - 1  

0 0 0 -  

and 

DF(C~))=°(Ctat)'I)@DR~(I)=(i O 0 ) 

Thus F =  Bx']'T. The induced representation which for 
its actual form depends on the choice of the coset 
representatives Ai, nevertheless gives an equivalent 
representation for an alternative choice. 

Engendered representation 
A representation of G obtained from a representa- 

tion of G/H is called the engendered representation. If 
the representation of G/H is irreducible, then so is the 
engendered representation. 

Example" The three representations of the quotient 
group T/D2 = Ca, which is cyclic, are A, E,, Eb and these 
are just the representations of T with the characters as 
shown in Table 2. 

Allowable or small representation (A R) 7 
7 is said to be an allowable representation of 

LU(G,H,A) if 7 subduces a multiple of A on H, i.e. 
7~,H=mA. 

Example: A, E,, and E~ are the three AR's of LU(T, Dz, A) 
=T. 

Key little-group theorem 
If 7 is an AR of L"(G,H,A), then F=},~G is ir- 

reducible and if the AR's of only one little group per 
orbit of H are used to induce the IR's of G, then each 

IR of G is found once and only once. This theorem 
enables us to have a completely unambiguous classi- 
tication of all the IR's of G. 

The method 

The little-group technique of finding the IR's of G 
making use of the solvability property involves the 
following steps. 

(i) Find the composition series G = H0 D HI D Hz . . .  
D I for G. Choosing H = H , ,  we note that since G is a 
solvable group, the quotient group G/H is a cyclic 
group of arime order g/h = ~, say and its representations 
are known. 

(ii) Classify the [R's of H into orbits 0~ with respect 
to G. The order of each orbit is either ~i or 1. 

(iii) Choose one IR, say Ai of dimension d~ from 
each orbit 0i. (a) If the order of 0~ is ~ ,  then LU(G, H,J~) 
= H  and there is only one IR of G of dimension (g/h)d~ 
obtained by inducing with Ai. (b) If the order of 0i is 1 
and Ai is non-degenerate, there are ~ IR's of G which 
are engendered by the IR's of G/H. IfA~ is degenerate, 
then the IR's of G are obtained from those of G/H in 
conjunction with the defining relations for the genera- 
tors of G. 

(iv) The IR's of t[=-lt~ are in turn obtained from 
those of H2 by repeating steps (ii) and (iii). In this way, 
one can reduce the problem of finding the IR's of a 
solvable group G to that of finding the composition 
series of G and that of finding the IR's of the cyclic 
groups. 

Example 

The method of finding the IR's of O is depicted in Fig. 
1. Taking the composition series O ~ T ~  D2 for O, we 
see that the quotient groups O/T and T/D2 are cyclic 
groups of prime orders 2 and 3. D2 has two orbits with 

0 T 0 2 

A, 

A 2 

E 
(T) 

• Eo~ 
E 

b 

(D 2) 

By 
B, 

Fig. 1. Little-group technique of obtaining the IR's of 0 
making use of the solvability property. The symbols within 
the parentheses represent little groups of the second kind 
I~n(G, H, d). 
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respect to T: 01 = A and 02 = {Bx, By, Bz}. Thus there are 
three AR's  ofT, A,Ea, Eb, resulting from A and obtained 
by engendering with the IR's  of  T / D / = C 3  and one 
three-dimensional representation F obtained by in- 
ducing with Bx. Obviously these AR's  of  T are them- 
selves IR's  of T. 

The IR's  of  T are now classified into three orbits 
relative to O : 01 = A, 02 = {E,, Eb} and 03 = F. Represen- 
tation A gives rise to two IR's A1,A2 of O obtained by 
engendering with the IR's of  O / T = C 2  and E~ can be 
seen to induce the representation E. The two three- 
dimensional  representations FI, F2 of O are obtained 
from F from the IR's of O / T =  C2 and by noting that 
(Cj~:)2=C; . The matrices thus obtained for the 
generating elements of  the degenerate species of  T and 
O are given below Tables 2 and 3. 

I thank Dr. D. C. Moule for the award of a research 
fellowship. 
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A Simple Direct Method for Solving Centrosymmetrie Projections 
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Fourier syntheses with a very few properly chosen terms can often represent structures quite well in pro- 
jection. The use of triple-product relationships is shown to optimize the choice of terms for such a syn- 
thesis while minimizing the necessary number of sign combinations. The application of this method is 
demonstrated in the solutions of three structures: (1) 2,3-dimethoxybenzoic acid (orthoveratric acid); 
(2) (+)-2,4,6-trimethylpimelic acid; (3) morpholinium nitrate. 

Several methods for solving crystal structures using 
only a very few structure factors have been put for- 
ward. These include Lonsdale 's  (1929) classic solution 
of hexamethylbenzene, Robertson's  (1945) solution of 
coronene, and Wooifson's  (1954) method of permuta- 
tion syntheses. We wish to call attention to what we 
believe to be the optimal method of using a few struc- 
ture factors, based on Cochran 's  (1952) discussion of 
the representation of electron density by Fourier series. 

Lonsdale's method, used later by Robertson, depends 
on the recognition that if ]Uhk~l is near the max imum 
value of 1-0, then all the atomic centres must lie on or 
close to the crests of that Fourier component  of  the 
electron density. If there are several such Uh~z, what 
may be called geometrical Fourier summations  can 
then be made, and a molecular model fit to those re- 
gions where crests coincide, the correct set of signs 
being found by trial and error. Figs. 1 and 2 show such 

* Present address: Department of Physics, University of 
York, Heslington, York, Y01 5DD, England. 

syntheses for hexamethylbenzene and for coronene. 
Since, however, reflexions with I UI near 1.0 usually 
arise from special structural features, they are generally 
quite rare, and without such outstandingly strong re- 
flexions this method cannot be applied. 

Woolfson's  method of permutat ion syntheses is 
completely general, but has other severe limitations. 
The grounds for selection of terms included in the syn- 
theses are left somewhat vague. The choice of signs is 
based not on any crystallographic information but 
solely on a combinatorial  analysis. It is accepted in 
advance that one sign in seven may be wrong, in order 
to limit the number  of combinat ions that need be tried, 
which even so is rather large (for example, 256 syn- 
theses for 16 terms). 

The method we propose relies first of  all on the fact 
that, in projection down a reasonably short axis, the 
usual numerical  Fourier summation made with quite 
a small number  of properly chosen terms can be suf- 
ficient to reveal all or most of  a structure. The terms 
should be chosen from the largest E's,  as these in gen- 


